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An existing pressure correction method to model unsteady flow with 
arbitrarily moving boundaries has been adapted to simulate three- 
dimensional blood flow in compliant vessels. This noniterative method, 
which is first-order time accurate, solves the three-dimensional 
unsteady Navier-Stokes equations with arbitrarily moving boundaries 
for the no slip boundary condition. It is capable of realistically modeling 
blood flow in the heart, since it allows the simulation of both passive 
tissue (e.g., heart valves) and active tissue (e.g., heart muscle fibers). 
The boundaries, which represent cardiovascular tissue, are displaced by 
the fluid motion. When they are moved, the boundaries have the ability 
to exert a force which opposes fluid motion. The force the boundary 
exerts is assumed to be proportional to strain. The results of simulating 
3D pulsatile flow through a flexible tube are presented, as well as a 
comparison to Womersley’s analytic approximate solution for axisym- 
metric pulsatile flow in a flexible tube. 0 1992 Academic Press, Inc 

INTRODUCTION 

For the past two decades, computational fluid dynamics 
has been a useful research tool in the study of cardio- 
vascular fluid mechanics. The value of a validated, versatile 
computational model, capable of simulating a wide variety 
of fluid flow geometries, is well known. Such a model would 
greatly reduce the expense of gathering experimental 
data by aiding the experimentalist in the interpretation of 
measurements and the planning of future experiments. It 
would also permit the gathering of data that would have 
been very difficult or impossible to obtain by another 
method. 

Most previous computational models simulated two- 
dimensional flow in a rigid body. Several have simulated 
flow through heart valve-like geometry using a body- 
conforming grid for different flow regimes. The following 
groups have developed models to simulate steady laminar 
flow in a heart valve: Greenfield and Kolff [ 11, Greenlield 
et al. [2], Au and Greenfield [3, 41, Underwood and 
Mueller [S, 63, Bercovier et al. [7], Engleman et al. [S], 
and Idelsohn et al. [9]. With the exception of Idelsohn et al. 
which simulated flow up to a Reynolds number of 2000, all 
of the steady laminar flow studies were for relatively low 

Reynolds numbers. Steady turbulent flow through heart 
valve-like geometries has been simulated by Stevenson 
and Yoganathan [lo, 111, Stevenson et al. [12], and 
Thalassoudis and Mazumdar [ 131. Unsteady laminar flow 
through heart valve-like geometry was done by Hung and 
Schuessler [14, 151 and Williams [16]. Although Hung 
and Schuessler did simulate moving boundaries, their rigid 
boundaries moved according to some predetermined time 
course. 

Recent computer research in cardiovascular fluid 
dynamics has taken advantage of technological advances 
in computer hardware. This research has primarily been 
directed at understanding three-dimensional biofluid flow in 
a rigid body, such as, flow in a curved tube [ 17-231, flow in 
the cardiac chambers, and flow in a bifurcated tube. Steady 
flow in a rigid carotid bifurcation has been simulated by 
Kleinstruer et al. [24] and Rindt et al. [25]. Simulations of 
unsteady flow in rigid cardiac chambers has been used for 
artificial heart research [26). They assumed the heart to 
have rigid walls which could move according to some 
predefined time course. 

While these simulations offered valuable insight into the 
particular type of fluid flow they simulated, they were 
unable to account for the effect of flexible boundaries. 
Peskin did account for the effect of flexible boundaries in his 
simulation of unsteady two-dimensional flow in the left 
heart [27729]. Peskin’s 2D algorithm is a versatile research 
tool because of its unique ability to deal with flexible 
boundaries. In subsequent work, Peskin’s approach was 
altered to allow 3D simulations [30, 313. It is this algorithm 
and its validation by comparison to the approximate 
analytic solution of Womersley flow that is presented here. 

METHODOLOGY 

Model Requirements 

Ideally, we would like to model the interaction of blood 
flow in the cardiac chambers with the cardiac tissue. Car- 
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diovascular flow can be characterized as three-dimensional 
unsteady flow in a compliant vessel. The cardiovascular 
tissue that composes the flow boundaries in the heart is 
either passive or active (contractile). Passive tissue, such as 
heart valve leaflets, exerts a force on the fluid only when 
resisting displacement. Active tissue, or heart muscles, is 
capable of exerting a time-varying force that is not a func- 
tion of the flow field. The computer model should ideally be 
capable of modeling a three-dimensional, unsteady flow 
field and the flow field’s interaction with both passive and 
active tissue. 

Overview of Algorithm 

In the early seventies, Peskin developed an immersed 
boundary method that satisfied all of the model’s 
requirements except one; it was two-dimensional [27]. His 
model used Chorin’s pressure correction algorithm to solve 
the two-dimensional Navier-Stokes equations for flow in 
the left ventricle. The heart walls, which behaved as a 
muscle, and mitral valve were modeled as a set of neutrally- 
buoyant springs that were immersed in the fluid. Contrac- 
tion of the heart walls generated the force required to drive 
the fluid flow. The heart walls and mitral valve also exerted 
a force (which was a function of strain) on the fluid. At the 
start of each time step, the force of the heart walls and mitral 
valve on the fluid was computed. Based on this force, the 
Navier-Stokes equations were solved for the velocity field. 
At the end of the time step, the velocity and displacement of 
the heart structures were computed using the end-time-step 
velocity field. 

To simulate a three-dimensional unsteady flow field and 
its interaction with flexible boundaries, the 2D algorithm 
was extended to 3D [30, 311. The 3D algorithm is based on 
the same assumptions used in the 2D model. However, 
before the 3D algorithm can confidently be used to model a 
complex flow field, it is necessary to validate its accuracy. 
This is accomplished by simulating 3D pulsatile flow in a 
flexible tube and comparing the results to Womersley’s 
approximate analytic solution for axially symmetric 
pulsatile flow in a flexible tube. The remainder of the paper 
deals with this validation study. 

Boundary Algorithm 

The tube wall was represented as a set of points that were 
free to move in response to the fluid field. Since the bound- 
aries are not rigid, fixed structures, a system of equations 
must be developed and solved to predict the boundary 
position as a function of time. These equations must also 
couple the boundary and fluid together. As in Peskin’s, the 
boundary can be described as follows: 

- It is represented as a set of discrete points, on a fluid 
grid. 

- Its points do not necessarily lie on the grid nodes. 
- It is neutrally buoyant. 
- It moves at the same velocity as the surrounding fluid 

(no slip boundary condition). 

The boundary is capable of generating a force field that 
acts on the fluid. For the flexible tube model, a skeleton of 
stationary points which do not move in response to fluid 
motion are distributed on the fluid grid in the shape of a 
tube according to the following algorithm: 

Xi,, 1 = (Rh) COS $ j + 32.5 h 
r 

(11 

where 

Xi,j,,=(Rh)sin$j+32.5h 
r 

Xi,j,3 = (0.4 h)i, 

(2) 

(3) 

O<i< 159, 

16j<N,, 
N, = 2zRiO.4, 
20dR,<24, 
h = grid width = l/64 cm. 

The above algorithm is for a grid with 64 points in each 
direction; the tube’s axial direction is along the z axis and its 
centerline intersects with the center of the x-y planes. 

Tethered to each stationary point is one “free-moving” 
point. The initial position of the free-moving points is the 
same as its corresponding stationary point. The free-moving 
points move at the same velocity as the surrounding fluid. 
When a point is displaced from its original position by the 
fluid, a tension, T,,i,l results between the stationary point 
and its associated free-moving point in the I-direction 
according to the following: 

where 

Ti,j,l=E(X*,,j,,-X,i,,), (4) 

E is the proportionality constant between strain and the 
resulting tension and has the units of dynes/cm*, 

X*,,i,l is the position of stationary point, and 
X,,,,, is the position of free moving point. 

The proportionality constant E is a function the tube wall 
thickness, tube radius, the Young’s modulus of the tube, and 
Poisson’s ratio for the tube. Since we wished to compare the 
simulation results to Womersley’s approximate analytic 
solution, it was important that the analytic solution 
describe the same tube properties. Equation (4) was 
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assumed equivalent to the expression Womersley utilized if 
the same tension resulted from equivalent wall strain. 

In the expression Womersley utilized to describe the rela- 
tionship between tension and strain, there is a term known 
as Poisson’s ratio (defined in Appendix A). This term, which 
does not appear in Eq. (4), describes the contribution of 
radial strain to longitudinal tension, as well as the contribu- 
tion of longitudinal strain to radial tension. Since Eq. (4) 
does not include Poisson’s ratio, it would appear that this 
equation describes a material for which Poisson’s ratio is 
zero. Because the strain used in this model was calculated 
as a function of the flow field, the boundary exhibits a 
Poisson’s ratio characteristic of an incompressible fluid, or 
0.5 (versus approximately 0.4 of blood vessels). Therefore, 
the simulations do include the effect of a Poisson’s ratio of 
0.5 on the stress vector. 

With the method used for the simulations presented 
here, the boundary displacement due to the fluid field is 
calculated by approximating the boundary velocity, 
assuming no slip between the tube wall and the fluid. Based 
on the displacement distance, one can estimate the force of 
the boundary on the fluid. The force field is discrete and is 
only known at the boundary point locations. To use this 
force in the pressure correction algorithm, one must 
calculate an equivalent force field known at the fluid grid 
nodes. The method used to calculate the boundary displace- 
ment and its resulting force field at the fluid grid nodes is 
based on Peskin’s approach [30]. 

Fluid Algorithm 

Once the fluid force field at the grid nodes is known, then 
a new velocity and pressure field is calculated by solving the 
Navier-Stokes equations in accordance with the immersed 
boundary method [30]. The portion of this method which 
solves the Navier-Stokes equations is based on a pressure 
correction algorithm [33]. 

To drive the fluid in the tube, a time varying sinusoidal 
axial volumetric flow rate was specified. To maintain the 
specified flow rate, a set of additional steps were added to 
the immersed boundary algorithm prior to the interpolation 
of the fluid velocity field to the boundary points. The first 
step was to calculate the volumetric flow rate over all 
planes, for some constant z, from the previous time step 
according to Eq. (5), 

In the pressure correction method the final fractional step 
involves forcing the velocity field to have zero divergence by 
the addition of a velocity field which will force zero 
divergence [30]. The computation of this velocity field 
(7.4 

I,J,K,L involves solution of Poisson’s equation, with a 
fast Fourier transform [30]. Solution of Poisson’s equation 
with this method does contain some inherent error. One fac- 
tor which contributes to the error is the fact that Poisson’s 
equation is solved for a cylindrical problem (flow in a tube) 
in the Cartesian coordinate system. Since the errors are 
small, they are only noticeable if the magnitude of that 
velocity field is close to zero, which occurs during some 
phases of pulsatile flow. Because we were interested in 
simulating pulsatile flow, minimizing these errors was 
desirable. To accomplish this, the velocity field W”,, J,K ) is 
modified according to tangential position by the following 
algorithm. First, the grid points which are located inside the 
tube, at some constant z, are divided into 10 sets of 2.4 mesh 
width width thickness (for a tube radius of 24 mesh widths) 
according to the following definition: 

qn=$L?LQ-’ 

W” ,,J,K.3 =O, if \(I- 32.5), (J- 32.5)1 

> R (outside tube) 

W”,,,,,, = q”p, if I(I- 32.5), (J- 32.5)1 

<R (inside tube) 

(6) 

(7) 

(8) 

w” - W”I.JJT.2 = 0, I,.I.K,l - (9) 

where 
j? = l/h2/(number of grid points inside the tube) 
$$ is the desired volumetric flow. 

Finally, the velocity field W”I,J,K was added to the previous 
time step velocity field to compute the fractional step 
velocity field U”, ~ l,,J, K,L (Eq. (10)). It should be noted that 
Eq. (10) is equivalent to the application of a body force 
equal to p W/dt: 

un,r’ 
I,J,K,L= UnplI,J,K,L+ WnI,J,K,L. (10) 

Because of the additional fracional time step, the first 
fractional step in solving the Navier-Stokes equation is 
changed to Eq. (11) from the form utilized in Peskin’s 
approach [ 301, 

u 
40 

IILL=Un’-‘,,~,K,L~~F~,J,K,L. (11) 

Then the velocity field W”, J, K, L which would have to be 
added to the velocity at the previous time step in order to 
achieve a specified axial volumetric flow rate was computed 
according to the following algorithm: 

PointsESetMif$(M-1) 

=$ I(Z- 32.5), (J- 32.5)1 <; M. (12a) 
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The mean of the velocity field U”.4,,J,K,3 for each of the 10 
sets, at some constant z, was computed, or 

M grid points 
EsetM 

where N, = number of points in set M. The 3D model was validated by comparison to 
Once the mean velocity was known, the fluid velocity field Womersley’s analytic solution for 2D pulsatile flow in a 

W” I,J.K,3 was modified for grid points in set M as: flexible tube as follows: 

(12c) 

It should be noted that this correction factor should be 
unnecessary when the fluid is driven by wall contraction, 
since driving the fluid by wall contraction is self-correcting 
for this type of error. Also, since this procedure involves 
radial averaging, the effective resolution of the computation 
was reduced. Finally, this approach did, to some small 
extent, enforce radial symmetry; but since the magnitude of 
the correction was too small in comparison to the axial 
velocity, the authors do not feel that this procedure had any 
significant effect on the radial symmetry of the pulsatile flow 
field. This is substantiated by the axial symmetry of the 
steady flow field which was not corrected in this manner. 

Selection of Model Parameters 

The parameters in the Navier-Stokes equations were 
selected based on physiologic norms, since the goal was to 
simulate physiologic flow. The parameters that were com- 
mon to all of the Womersley and Poiseuille flows simulated 
are shown in Table I. Three Womersley numbers were 
simulated: 13.2, 10, and 8. The Womersley parameter, 
which is defined in Appendix A, is a dimensionless number 
that indicates the relative importance of inertial effects to 
viscous effects for pulsatile flow; the smaller the Womersley 
number, the more important the viscous effects. The highest 
number simulated is characteristic of the human ascending 
aorta; the lowest is characteristic of the human abdominal 

TABLE I 

Womersley Flow Operating Conditions 

Parameter 

Reynolds No. 
Womersley No. 
Tube radius 
Grid width 
Time step 
Young’s modulus 
Kinematic viscosity 
Axial pressure gradient 
Tube wall thickness 

Current value Limit (if any) 

50to 140 
8 to 13.2 

24 grid widths 
0.015625 cm 
2.6 to 7.2 ms 

5,000,OOO dynes/cm’ 
0.03 cm/s* 

270 to 2300 dynes/cm3 
10 % of tube radius 

8a2/(3n) 

Same 

ph/d? 

aorta. Only two parameters, the frequency and time step 
size, were varied to simulate different Womersley numbers. 
The time step size was fixed so that there would be 64 time 
steps in each cycle. 

Approach to Validating the 30 Algorithm 

- Two different types of flow were simulated with the 
model: steady or Poiseuille flow at a Reynolds number of 
20, and Womersley flow. The Womersley simulations were 
performed for three different Womersley parameters, 13.2, 
10, and 8, at peak Reynolds numbers ranging between 140 
and 50. 

- The four Womersley constants that described the flow 
field for each test cases were computed. Womersley derived 
his solution using complex numbers, while the simulation 
was done with only real numbers. So although the complex 
flow field was calculated, only its real part was compared to 
the simulations. Details on how the complex Womersley 
constants were computed are available in Appendix B. 

~ The analytical and numerical predictions for the axial 
fluid and boundary motion were compared by graphs. It 
was not possible to constrast the model’s predictions for the 
radial boundary and fluid motion to Womersley’s predic- 
tions because of model limitations (see Results section, 
Oscillatory Flow, below). 

- A 3D animated movie was made of the model’s 
predictions for the axial flow field. 

- The relative magnitude of the disagreement between 
the numerical and analytical solutions for the axial velocity 
field was computed. The error was not computed for the 
axial boundary displacement because it would have been 
meaningless. Womersley’s solution for a flexible tube is 
known to over-predict the magnitude of axial wall motion 
in comparison to experimental observations [33]. 

RESULTS 

The computer simulation of fluid flow through a flexible 
tube marches forward in time and requires approximately 
1.5 cpu minutes per time step. At each time step, the model 
estimates the fluid velocity field resulting from the driving 
force and tube configuration known at the start of each time 
step. The tube is assumed to be immersed in the fluid and is 
treated as a specialized area of the fluid. This specialized 
area is capable of exerting a force. 

For the analytical solutions to Womersley and Poiseuille 
flow, air is assumed to surround the tube, which implies that 
the velocity of the fluid very close to the external surface is 
zero, even if the tube wall is moving. Therefore, the fluid 
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FIG. 1. (a) and (b). The approach to equilibrium (zero velocity) of the longitudinal wall velocity, at a Reynolds number of 20 (a); Reynolds number 
of 64 (b). (c) and (d). Poiseuille flow for a Reynolds number of 20. The dotted line is the model’s prediction; the dashed line is the analytic solution. 
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velocity gradient across the tube wall approaches a discon- 
tinuity, which is not observed in the simulations. The 
simulated velocity field is smoothed because the tube is 
assumed to be surrounded by the same fluid that flows 
through it. The gradient at the wall should approach reality 
under two conditions. First, there must be sufficient grid 
points in the near wall region to simulate the velocity 
gradient. Second, the model must be allowed enough time 
steps to asymptotically approach the true velocity field 
resulting from a tube wall configuration and driving 
force. When simulating steady flow in a flexible tube, the 
longitudinal wall velocity will initially be very high, 
approximately one-half that of the mean fluid velocity. The 
longitudinal wall velocity should approach zero as time 
goes to infinity, so this velocity should indicate if the 
method is converging to the true velocity field and how fast 
it is converging. In Fig. la and b, one can see that the com- 
puted flow field does converge to the true velocity field as 
time goes to infinity and that the higher the Reynolds 
number, the slower the convergence. With Poiseuille flow 
the driving force is constant for all time steps and adequate 
time was permitted to find the gradient. With Womersley 
flow the driving force changes at every time step, so it is 
likely that there is some error in the near wall velocity field, 
especially for the relatively high Womersley numbers 
simulated. 

Steady Flow 

The steady flow case, which simulates Poiseuille flow in a 
tube that was 40 mesh widths in diameter at a Reynolds 
number of 20, was done as a first step in validating the algo- 
rithm, since it is the simplest case. Steady state was reached 
after 40 time steps or 200 ms when the maximum change in 
the axial velocity field between time steps was less that 
0.01%. Figure lc shows the smooth parabolic shape of the 
steady-state axial velocity profile. If this model were perfect, 
there would have been no radial flow. However, radial flow 
did occur because of radial boundary motion and the inac- 
curacy of the algorithm used to solve Poisson’s equation 
(Poisson’s equation is solved when calculating the pressure 
field necessary for zero velocity divergence). This inaccuracy 
is directly related to the number of grid points; the more 
points, the more accurate the solution. Nevertheless, the 
inaccuracy in this algorithm is not noticeable in the axial 
velocity profiles because the axial velocity is large compared 
to the error. 

Figure Id, the axial velocity profile in 3D, establishes that 
the internal flow field is axially symmetric, but there are 
small deviations in the external axial flow field as one moves 
around the tube at constant radial position. These “velocity 
bumps” in the flow field are the result of not correcting the 
velocity field which was added to the end time step velocity 
field to drive the fluid. As previously reviewed in the 

Methodology section, these tangential variations at 
constant radial position occur when simulating axially 
symmetric flow in a Cartesian coordinate system. 

Oscillatory Flow 

With increasing Womersley number, one would expect 
the axial velocity profile to change from a parabolic shape 
to a blunter, or plug flow shape. This is because as the 
Womersley number increases (inertial effects become more 
important), frequency increases, and the amount of time 
available to develop a parabolic profile decreases, so the 
profile becomes blunter. Figure 2 shows the axial velocity 
profile at 45”-intervals in the phase angle for a sinusoidal 
flow cycle, for three Womersley numbers 13.2, 10, and 8. As 
expected, the axial velocity profile became blunter with 
increasing Womersley numbers. Also in Fig. 2, one can see 
that the fluid in the center of the pipe possesses more 
momentum than that at the edges, since it is moving faster. 
Because of the momentum associated with the fluid in the 
center of the pipe, the centerline axial velocity profile lags 
behind the driving force. This lag results in the dip in the 

FIG. 2. Axial velocity profile for Womersley flow at different phase 
angles. The solid line corresponds to Womersley parameter of 8 and 
Reynolds number of 50; the dotted line is 10 and a Reynolds number of 80, 
and the dashed line is 13.2 and a Reynolds number of 140. The broken lines 
are tube walls. 
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centerline axial velocity profile that is characteristic of 
pulsatile flow. 

The velocity field for any phase angle is a function of two 
items, the system parameters, such as frequency, pressure 
gradient and Young’s Modulus, and the fluid field of the 
previous phase. If the program was allowed to run long 
enough so that the effect of the second item was the same for 
every cycle (zero transient effects), then the velocity profiles 
for phases 180” apart would be mirror images of each other 
(see Fig. 2). They are not because only one and a half 
cycles were simulated to reduce computer time. While some 
transient effects are present for the entire simulation, they 
are most noticeable in data collected early in the run, or 
between 0 and 180”. In Womersley flow, transient effects are 
assumed to be negligible. 

One simulation at a Womersley number of 10 was con- 
ducted to test the convergence to the periodic steady state. 
If the flow converges, the flow at one phase should be the 
mirror image of the flow at that phase plus 180”. Figure 3a 
establishes that the flow did converge; in fact the difference 
between the forward and reverse velocity profiles is so small 
(less than 0.1 % difference) that the two flow fields appear 
identical. An animated movie of this simulation was also 
made. Selected frames of the movie are shown in Fig. 3b 
which illustrates the radial symmetry of these 3D axial 
velocity profiles, both inside and outside the tube; i.e., the 
“velocity bumps” that were seen in Fig. 1 b, Poiseuille flow 
in 3D, are not apparent here. The fluid field irregularities 
were eliminated by correcting the velocity field added to the 

a 

J 

-M 
Radial position 

FIG. 3. (a) Comparison of axial velocity profile for a Womersley 
number of 10 of phases separated by 180”. The solid line represents 
forward flow; the dashed line represents the backward flow field. Note 
for comparison purposes the backward flow was multiplied by a - 1; also 
the differences between the forward and reverse flow are too small to be 
percieved. 

end time step field to move the fluid for tangential variations 
in the pressure field. 

The time course of the axial boundary position was also 
computed. The direction of the axial boundary motion 
corresponded to the flow direction for a given phase. 
The boundary displacement decreased with increasing 
Womersley number. This was expected, since increasing 
Womersley number decreases the time associated with one 
complete cycle. Reducing the cycle time decreases the net 
force applied to the boundary between 270 and 90” 
(forward flow), and between 90 and 270” (backward flow), 
which decreases the maximum absolute boundary displace- 
ment. 

Radial fluid and boundary motion are caused by two 
different effects, the pressure difference across the flexible 
tube wall and satisfaction of the continuity equation. Since 
pressure is a dependent variable, one cannot specify a 
pressure field with this method. In Womersley’s 
approximate analytic solution, the radial pressure gradient 
inside the tube is assumed to be zero, and there is a time- 
varying pressure difference across the tube wall. In the com- 
puter model, it was impossible to specify a radial pressure 
difference across the tube wall and zero radial pressure 
gradient within the tube, so we decided not to specify a 
pressure gradient across the tube wall. Our decision was 
justified by the fact that Womersley’s analytic solution is 
limited to very small radial boundary displacements, i.e., a 
very small pressure difference across the tube wall. The 
actual difference between the bulk internal fluid pressure 
and bulk external pressure was 10m6 dynes/cm’. The 
gradient at the wall was less than single precision accuracy. 

With pulsatile flow in a flexible tube, axial velocity varies 
down the length of the tube because of a finite pulse wave 
speed (see Eq. (13)). Since axial velocity is a function of 
axial position, the continuity equation demands radial flow. 
With these simulations, the pulse wave speed approached 
infinity, because the volumetric flow rate was not a function 
of axial position. An infinite pulse wave speed implies that 
axial velocity is not a function of axial position; therefore 
there would be zero radial motion caused by satisfying the 
continuity equation. With a very large wave speed and a 
very small pressure gradient across the tube wall one would 
anticipate very little or no radial boundary or fluid motion. 
That is what the model predicted. The radial boundary 
motion, which is a function of the weighted average of the 
radial fluid velocity close to the tube wall, was zero. The 
radial fluid velocity, which was close to zero, reflects the 
inherent error associated with this approach. To permit 
radial velocity and boundary motion the wave speed must 
be finite. Because of the boundary conditions this algorithm 
utilized, the pulse wavelength is limited to values less than 
the grid’s axial dimension. The grid’s axial dimension is of 
the same order of magnitude as the tube radius. Since 
Womersley derivation assumes that the pulse wavelength is 
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PHASE ANGLE= 22.5 DEGREES PHASE ANGLE= 45.0 DEGREES 

PHASE ANGLE = 67.5 DEGREES PHASE ANGLE = 90.0 DEGREES 

FIG. 3. (b) Axial velocity profile for a Womersley number of 10, and a Reynolds number of 80 at 45” phase angles. 
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PHASE ANGLE= 225.0 DEGREES 

PHASE ANGLE- 270.0 DEGREES 

FIGURE 3bContinued 
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much greater than the tube radius, simulations that would 
allow comparison of the radial velocity and boundary 
motion to Womersley’s approximate analytic solution are 
not possible. 

DISCUSSION 

Overall, the method was found to accurately predict 
pulsatile flow in flexible tube. Since the approach is inde- 
pendent of body geometry, it is reasonable to assume that it 
is capable of simulating pulsatile or steady flow through a 
large variety of flexible geometries. The main limitation of 
the method is that it is limited to low Reynolds numbers 
(less than 500 for the geometry used in this study), by 
the Courant-Friedrichs-Lewy stability condition, which 
requires the maximum grid velocity not to exceed that 
required to travel one grid width in one time step. Although 
the authors are aware that this method has in the past been 
limited to a local Reynolds number of less than two, based 
on grid mesh width, some of these test cases exceeded that 
limit. The authors can only speculate that the local 
Reynolds number limit must be dependent on the flow field 
simulated. Since a large number of physiologic flow fields 
can be characterized by a low Reynolds number, the limita- 
tion does not pose a problem for simulating physiologic 
flow. In fact, the method is capable of simulating unsteady, 
3D, low Reynolds number flows through a wide variety of 
compliant bodies. 

FIG. 4. (a) and (b) Comparison of approach to equilibrium of axial 
velocity, D’, for equivalent nondimensional axial position, z’. View A is 
computational flow; view B is analytically determined developing flow in 
the entrance region [34]. In both views the axial velocity and position are 
nondimensional (velocity by mean velocity and axial position by tube 
radius). Note the axial position is normalized by Reynolds number, so as 
to be Reynolds number independent. 

Steady Flow 

Although the model’s prediction is virtually identical to 
the analytical solution, there are small discrepancies in the 
near wall region. The relative maximum error at this loca- 
tion is 12 % (overall the model’s predictions are within 2 % 
of the true solution). The error in the vicinity of the wall is 
the result of two factors. First, the model will not allow a 
discontinuity in the velocity gradient across the tube wall. 
Second, there are insuffucient grid points within the tube 
(tube diameter = 40 mesh widths) to accurately simulate the 
velocity gradient. An additional case study was conducted 
in which the number of points within the tube was reduced 
by one half. Reduction in the number of grid points within 
the tube increased the error by 350%. 

Because this method marches forward in time, it is impor- 
tant to know if the time the computed flow field required to 
converge to the expected solution was dominated by the 
algorithm or the physics of the problem. Insight into the 
factors that governed the convergence of the steady flow 
field can be obtained by comparing the computed flow to 
flow in the entrance region of a pipe. Entrance region flow 
has been studied extensively by Langhaar [34]. The 
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FIG. 5. Axial velocity profile for a Womersley number of 8 and a 
Reynolds number of 50 in a flexible tube, at different phase angles. The 
solid line is the model’s prediction; the dotted line is the analytic solution: 
and the dashed lines are the tube walls. 
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development of the computed flow profile as a function of 
time can be viewed in a Lagrangian sense as the entrance 
flow down a tube; the axial position of the simulated flow 
field would correspond to the mean velocity of the fluid 
multiplied by the elapsed time. Figure 4 compares the 
developing simulated axial velocity profile, which has been 
nondimensionalized by mean velocity, to that analytically 
determined by Langhaar at equivalent dimensionless axial 
locations. Axial position was nondimensionalized and scaled 
so as to be independent of Reynolds number according to 
the following formula: 

2002 
Non-dimensional axial position = N, 

re 

where 

R is the radius of the tube, 
Z is the axial position in centimenter, 
N,, is the Reynolds number, and 
for the computational tube, Z or the axial position was 

defined as the mean velocity times the elapsed time. 

I 
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One can deduce from these two plots that the time 
required for the numerical flow field to converge to the 
steady state solution was dominated by the physics of the 
problem, not the numerical approach. 

Oscillatory Flow 

The model’s predictions were compared against 
Womersley’s analytic solution for pulsatile flow in a tube 
(see Fig. 5-7). The model accurately predicted the axial flow 
field in the center of the pipe. The predicted axial velocity 
was within 3 % of that calculated with Womersley’s solution 
for the region within 67% of the tube radius from the 
centerline. However, there are large discrepancies between 
the analytical solution and the model’s predictions for the 
flow field adjacent to the wall. These discrepancies are 
primarily the result of differences in the axial wall motion; 
Womersley’s solution, which over-predicts the axial wall 
motion in comparison to experimental observation [33], 
predicted a tube motion five to six times larger than that 
observed with the computational tube (see Fig. 8). That the 
computational tube motion is less than that predicted by 
Womersley is not surprising, since the computational tube 

FIG. 6. Axial velocity profile for a Womersley number of 10 and a FIG. 7. Axial velocity profile for a Womersley number of 13.2 and a 
Reynolds number of 80 in a flexible tube at different phase angles. The solid Reynolds number of 140 in a flexible tube at different phase angles. The 
line is the model’s prediction; the dotted line is the analytic solution, and solid line is the model’s prediction; the dotted line is the analytic solution; 
the dashed lines are the tube walls. and the dashed lines are the tube walls. 
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FIG. 8. Axial boundary motion for a Womersley number of 8 , 10, and 
13.2. The solid line is the model’s prediction; the dashed line is the analytic 
solution. 

had massive fluid both inside and out, whereas Womersley’s 
tube only had fluid within it. The mass of fluid adjacent to 
the inside of the tube was roughly equal to the externally 
adjacent mass, so the additional fluid dragged along by the 
computational wall was approximately twice that of the 
Womersley tube. From this analysis, one would expect the 
Womersley tube displacement magnitudes to be twice that 
of the computational tube, not live to six times larger. The 
additional dampening of the computational tube wall 
motion can be attributed to how computational strain was 
determined. As with arteries and veins which have elastic 
attachments to surrounding tissue, the computational tube 
was tethered to stationary points, so strain was determined 
relative to these fixed points. With Womersley’s tube, strain 
was a funcion of the displacement of the tube wall relative 
to itself. It should be noted that although the model 
correctly predicted an axial wall displacement less than that 
predicted by Womersley, it is probable that the simulation 
under-predicted the movement because the presence of a 
viscous fluid outside the tube would tend to dampen any 
boundary motion. 

If the discrepancies between the simulation results and 
Womersley approximate analytic solution for a flexible tube 
are primarily the result of overestimating of the boundary 
motion by Womersley’s approximate analytic solution, one 
would expect improved agreement in the near wall region 
by comparing the flow field to the analytic solution for 
pulsatile flow in a rigid tube. Figures 9 through 11 compare 
the model’s predictions to a rigid tube (the difference 
between the analytical and numerical solution is 3 % within 
90% of the tube radius from the centerline). As would be 
expected, the model predicts more flow reversal than the 
analytical solution for a rigid tube in the vicinity of the wall 
because the walls are not truly rigid. Since the simulations 
had less flow reversal than the analytic flexible tube solu- 
tion, the model’s predictions are consistent with known 
limitations to Womersley’s approximate analytic solution. 

In a flexible tube, the pulse wave speed is finite (less than 
1000 cm/s); in a rigid tube it is infinite. The simulated pulse 
wave speed, which was calculated to be 50,000 cm/s using 
Eq. (19) (in Appendix B), approached infinity. This is much 
larger than the analytically estimated wave speed of 
500 cm/s because the flow was driven by a specified axial 
volumetric flow rate which was a function of time only. 

RADIALPOSITION 

FIG. 9. Axial velocity profile for a Womersley number of 8 and a 
Reynolds number of 40 in a flexible tube compared against analytic solu- 
tion for pukatile flow in a rigid tube at different phase angles. The solid line 
is the model’s prediction; the dotted line is the analytic solution; the dashed 
lines are the tube walls. 
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FIG. 10. Axial velocity profile for a Womersley number of 10 and a 
Reynolds number of 80 in a flexible tube compared against analytic solu- 
tion for pulsatile flow in a rigid tube at different phase angles. The solid line 
is the model’s prediction; the dotted line is the analytic solution; and the 
dashed lines are the tube walls. 

Since the pulsatile simulations exhibit characteristics of flow 
in a rigid tube such as zero radial fluid or boundary motion, 
effectively infinite pulse wave speed, and axially indepen- 
dent velocity profile, one might ask how can the authors 
justify labeling these simulations as pulsatile flow in a 
flexible tube? To answer this question consider pulsatile 
flow in a flexible tube at a fixed axial location. If the pulse 
wavelength is very long in comparison to the tube circum- 
ference, which is true for these case studies, the tube radius 
can be assumed constant and the radial velocity is very 
small in comparison to the axial velocity. For this case, the 
radial fluid and boundary motion contribute very little to 
the axial profile at fixed axial position. The primary effect of 
the flexible boundary is that the fluid velocity at the wall 
oscillates about zero because of time-varying axial wall 
strain. Because strain was defined relative to a fixed set of 
points, the effect of a flexible wall, i.e., time varying strain, 
was included in the simulations. Since time-dependent axial 
strain is the primary ingredient which causes the charac- 
teristic axial velocity profile, we feel that these simulations 
model pulsatile flow in a flexible not rigid tube. 
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FIG. 11. Axial velocity profile for a Womersley number of 13.2 and a 
Reynolds number of 140 in a flexible tube compared against analytic solu- 
tion for pulsatile flow in a rigid tube at different phase angles. The solid line 
is the model’s prediction; the dotted line is the analytic solution; and the 
dashed lines are the tube walls. 

CONCLUSIONS 

Overall, the method compared well with both Womersley 
and Poiseuille flow. The discrepancies between the model’s 
predictions and the approximate analytic solution were 
confined to the near wall flow region and the magnitude of 
the boundary motion. These discrepancies are primarily 
the result of two fundamental differences between the 
Womersley model and the computational model. First, the 
computational tube had fluid both inside and out, while 
Womersley’s tube only had fluid in its interior. Fluid outside 
the tube would tend to smooth the axial gradient at the wall, 
i.e., at a discontinuity. In addition, the massive external fluid 
increased the effective mass of the computational tube, 
which would dampen the axial wall motion. Finally, the 
computational tube was assumed to be tethered to station- 
ary points, unlike Womersley’s tube. These attachments, 
which were physiologically realistic, since arteries and veins 
have elastic attachments to surrounding tissue, increased 
the computational wall resistance to motion. As a result 
Womersley’s tube over-predicted axial wall motion in 
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comparison to both the computational tube and experi- 
mental observations. 

This method does not change with body geometry, so it 
is probable that this approach can be used to simulate 
pulsatile or steady flow though a large variety of flexible 
geometries, such as flow in tubes with a bifurcatio, flow in 
straight tubes, flow in curved tubes, and flow in the cardiac 
chambers. In the future, the method will be adapted to 
simulate the motion of a heart valve leaflet. For this simula- 
tion, the leaflet points will be attached to their neighbors, 
not to stationary points. In addition, a heart valve leaflet 
really is surrounded by fluid, so it is anticipated that the 
difficulties that occurred in simulating tube wall motion will 
not be encountered. 

APPENDIX A: NOMENCLATURE 

Boundary 

E 

s 

Ti,/,k 
x 
x* 

Fluid 

V 

u 

N 

Womersley 

Proportionality constant which relates 
strain to tension 

Strain, or the distance between points X* 
and X 

Tension between points X and X* 
Free-moving points 
Stationary points 

Kinematic viscosity 
Fluid velocity 
Number of points on the grid in each direc- 

tion (N= 64) 
Number of points in set M 
Time step size 
Mesh or grid width 
Volumetric flow for time step n 
Desired volumetric flow for time equal to 

n dt 
Velocity field required to drive fluid 
First fractional step velocity field resulting 

from imposing a volumetric flow rate 
Second fractional step velocity field 

resulting from boundary forces acting on 
fluid 

Last fractional step velocity field calculated 
to force zero divergence 

Mean of final fractional step velocity field 
for points in set M, at some axial loca- 
tion K. 

A i, C,, D,, E, Womersley constants 
W Axial velocity 

V 

: 
W 

C 

c1 

PO 

P 
Y 
k 
(T 

Z 

A 

Subscripts 

4 J, K 

L 
Lj 
I 
M 

Superscripts 

* 
n 

Radial velocity 
Radial boundary motion 
Axial boundary motion 
Circular frequency 
Pulse wave speed 
Womersley parameter; Rw/v 
Tube wall density 
Fluid density 
Dimensionless radial position, r/R 
Ratio of tube wall thickness to tube radius 
Poisson’s ratio = (Young’s modulus)/ 

(2 * shear modulus) - 1 
Axial position 
Cross-sectional area of pipe 

x, y, z location of the grid point on the grid, 
respectively 

Direction of the velocity vector 
Refers to boundary points 
Refers to x, y, z direction 
Refers to grid points in set M 

Free moving boundary point 
Time step n 

APPENDIX B 

Womersley described pulsatile flow through a flexible 
thin-walled tube with a system of live differential equations, 
the continuity and momentum equations for axial and 
radial flow, and the equations that described the axial and 
radial wall displacement [33]. In his derivation, he made 
six assumptions. 

- The fluid obeyed the no-slip boundary condition at 
the wall. 

- All convective terms were negligible. 
- The second-order differential terms in the axial 

direction were negligible. 
- The magnitude of the radial wall displacement was 

small in comparison to the tube diameter. 
- The flow was driven by an oscillating pressure of the 

form of p = poeiw’. 

- Inertial terms were neglected. 

With these differential equations and assumptions, he 
solved for the pulse wave speed, the axial and radial fluid 
velocity, as well as the axial and radial boundary motion 
(Eq. (13) through (17)): 
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c=((l-g2)~~(~~(G’-(l-gl)H)li2))1’2 (13) 
3. A. Au and H. S. Greenfield, Comput. Biol. Med. 4,279 (1975). 

4. A. Au and H. S. Greentield, Compuf. Biomed. Res. 10, 165 (1977) 
5. F. Underwood and T. Mueller, J. Biomech. Eng. 99,91 (1977). 

(14) 6. F. Underwood and T. Mueller, J. Biomech. Eng. 101,198 (1979). 

(15) 7. M. Bercovier, M. Engelman, and J. Borman, in Computing Methods 
in Applied Sciences and Engineering, edited by R.Glowinski and 

where 

&+2k 1 -_ 
l-P,, . 

C/.25-a k 
I-F+2+~-0.25 

10 

F 
10 

= 2J,(ai3’2Y) 
22 ~3/2~~(~i3/2)’ 

(16) 
J. L. Lions (North-Holland, Amsterdam, 1980), p. 571. 

8. M. Engleman, S. Moskowitz, and J. Borman, J. Thorac. Cardiouasc. 
Surg. 79,402 (1980). 

(17) 
9. S. Idelsohn, L. Costa, and R. Ponso, J. Biomech. l&97 (1985). 

IO. D. Stevenson and A. Yoganathan, in AIChe Symposium Series 79, 
edited by J. Tarbell (American Institute of Chemical Engineers, 
New York, 1983) p. 145. 

11, D. Stevenson and A. Yoganathan, J.,Biomech. 18,899 (1985). 
12. D. Stevenson, A. Yoganathan, and F. Williams, J. Biomech. 18, 909 

(1985). 

13. K. Thalassoudis and J. Mazumdar, Med. Biol. Eng. Comput. 22, 529 
(1984). 

14. T. Hung and G. Schuessler, in Advances in Bioengineering, Chemical 
Engineering Progress Symposium Series 67, edited by R. Ruckles 
(American Institute of Chemical Engineers, New York, 1971) p. 8. 

15. T. Hung and G. Schuessler, J. Biomech. 10,597 (1971). 
16. F. Williams, A. Yoganathan, and C. Cockerham, submitted for publi- 

To compare the model’s predictions to that of the analytic 
solution, the four Womersley’s constants must be estimated. 
Since the force to drive the fluid flow was calculated by 
fixing the volumetric flow rate, it was decided to calculate 
the Womersley’s constants based on the volumetric flow 
rate. Equation (18) shows the relationship between the 
volumetric flow rate and the Womersley coefficients: 

e = Real c, 2Jl(mi3’2) +“‘) e-ll)) (18) 
ai3’2Jo(Cri3’2) pc 

In Eq. (18), A I and C, are imaginary numbers, so there are 
four unknowns and four equations are needed. Only two of 
the four equations can be obtained from Eq. (18) by varying 
the phase angle, because of linear dependence. To simplify 
the mathematics, peak forward flow, or a phase angle of 
360”, and zero net flow, or a phase angle of 270” were 
selected. Two other equations were needed. It was 
arbitrarily decided to use the equation for centerline axial 
velocity for the two phases. 
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